A Novel Global Self-Timing Methodology for BSFQ Circuits
نویسندگان
چکیده
Recently we have proposed Boolean single-fluxquantum (BSFQ) circuits, which like CMOS circuits directly support Boolean primitives, and do not require local synchronization for their elementary cells as well as for their combinational cells. However, only the cell-level timing description of the BSFQ circuits was considered, which did not specify their global timing strategy in a system-level design. In this paper, we present a novel global self-timing methodology, dual encoding hierarchical pipelining (DEHP), for the locally asynchronous BSFQ circuits. In circuit implementation, a nonvolatile memory cell named ND-DFF and a volatile memory cell named D-DFF have been designed.
منابع مشابه
New BSFQ Circuit Designs with Wide Margins
Recently we have proposed novel Boolean Single-Flux-Quantum (BSFQ) circuits, which just like CMOS circuits support Boolean primitives directly, and do not require local synchronization for each operation cell. However, previous BSFQ AND, OR, and XOR cells suffered from problems with narrow margin, where their critical margins hardly exceeded +lo% due to low flux gain. Furthermore, while being s...
متن کاملDesign and experimentation of BSFQ logic devices
Rapid single flux quantum (RSFQ) logic needs synchronous pulses for each gate, so the clock-wiring problem is more serious when designing larger scale circuits with this logic. So we have proposed a new SFQ logic which follows Boolean algebra perfectly by using set and reset pulses. With this logic, the level information of current input is transmitted with these pulses generated by level-to-pu...
متن کاملA Design Methodology for Reliable MRF-Based Logic Gates
Probabilistic-based methods have been used for designing noise tolerant circuits recently. In these methods, however, there is not any reliability mechanism that is essential for nanometer digital VLSI circuits. In this paper, we propose a novel method for designing reliable probabilistic-based logic gates. The advantage of the proposed method in comparison with previous probabilistic-based met...
متن کاملAn Investigation into the Security of Self-Timed Circuits
Self-timed logic may have advantages for security-sensitive applications. The absence of a clock, as a reliable timing reference, makes conventional power analysis attacks more difficult. However, the variability of the timing of self-timed circuits is a weakness that could be exploited by alternative attack techniques. This paper introduces a methodology for the differential power analysis of ...
متن کاملA Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates
The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...
متن کامل